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ABSTRACT

Organic dyes are known to show resonant type of no_inear optical properties, including _.hase
conjugation. In _ present work, disodium fluorescein in methanol is used as an organic nofi_rlinear

medium for degenerate four wave mixing at 532 nm to see the intensity dependence of the phase

conjugate signal at different concentrations of the solution. It is observed that the maximum reflectivity
of the signal occurs in a concentration range of 5 x 10-3g/cm 3 to 1.2 x 10 -2 g/cm 3. It is also observed that

the intensity of the signal drops suddenly to less than half of its maximum outside the concentration

range mentioned above.

An investigation of the phase conjugate signal intensity by changing the delay time between probe

signal and the forward pump signal is also examined.

Briefly discussed is the possibility of population grating in dye liquids as a source of enhancing the
third order susceptibility besides the other techniques mentioned in reference *.

The experiment is done by beam splitting the second harmonic (532 rim) of Nd:YAG laser,

Q-switched at 20-pulses/sec. (pulse width _Sns and -_200 mJ per pulse).

*Supported by NASA Grant No. 2-356-14-3300-390.
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PHASE CONJUGATION BY DEGENERATE FOUR WAVE MIXING IN

DISODIUM FLUORESCEIN SOLUTION IN METHANOL

Introduction

Phase conjugation by degenerate four wave mixing (DFWM) has shown considerable promise as
a technique of generating high fidelity phase conjugate signals. The only difficulty which limits its use

is its low efficiency. Because of that, a great deal of research work is concentrated on finding the proper

and most efficient nonlinear media with the highest possible third order susceptibilities to improve the
efficiency.

In an earlier experiment 6, Caro and Gower obtained a DFWM signal which decreased and

vanished if the path difference was greater than the coherence length, showing that their signal was
purely due to DFWM. On the other hand, Basov et. al 8 obtained stimulated Brillouin Scattering from

two pump beams even with a path difference much larger than the coherence length of the laser. Seeded
Brillouin Scattering has also resulted in phase conjugation of two incoherent beams 9.

Recently, considerable interest has been generated in the study of organic dye solutions as efficient

nonlinear media. A class of highly efficient organic dyes with a wide and flexible range of operating
conditions has become known.

The purpose of our experiment is to pick up an organic dye as a nonlinear medium for our DFWM

experiments to investigate the possible mechanisms which are responsible for phase conjugation.
Disodium fluorescein was chosen among several other organic dyes as a candidate for our experiment

based on the idea that it showed a relatively strong phase conjugate signal, using a frequency doubled

Nd:YAG laser (532nm), Q-switched at 20 pulses/sec (pulse width -8 ns and -200 mJ/pulse), although
its absorption spectrum in ethanol shows only a small tail beyond 525 nm.

Mechanisms for DFWM:

When mutually coherent laser beams interfere in an absorbing medium, the interference pattern
heats the medium nonuniformly. The nonuniform heating causes density variations in the medium,

consequently an index of refraction grating, which Bragg scatters a read beam into the conjugate wave
signal, is formed.

It is believed 1 that in the initial few picoseconds after the energy has been deposited, the medium

has not yet had time to expand, the density is thus constant and any index change is due to the intrinsic

variation in the index of refraction with temperature at constant density. Subsequently, sound waves

produced by the nonuniform heating propagate across the medium and begin the expansion process.
Finally, the sound waves damp out and the usual thermally induced grating" becomes dominant.

Besides the thermal grating mechanism, there are other possible mechanisms which are also
responsible for producing nonlinear susceptibility like saturable absorption 3 and the optical Kerr
effect 4.
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In addition to these different mechanisms, one may also examine the energy level structure of a

typical dye molecule, shown in Fig. 15, where the first excited singlet state is generally higher than the

lowest triplet state. Since dye molecules are large, the vibrational and rotational levels in any electronic
state are too numerous and too closely spaced, and the spread of these levels is large. Further, the

excited singlet states are not well separated from one another. All the dye molecules in the excited states
relax quickly by nonradiative interactions to the lowest singlet state $1. This is the only state which has
been observed to fluoresce and has, in most of the cases, lifetimes of the order of a few nanoseconds.

The upper singlet states are not known to fluoresce and they relax to the $1 state in times of the order

of picoseconds. There are two other competing processes for relaxation of the molecules from $1 in

addition to the spontaneous emission to the ground state. Although singlet to triplet state transitions

are generally forbidden, relaxation to triplet levels is still possible. The triplet state T1 has a lifetime of

a few microseconds which is large compared to the life time of the $1 state.

The possible excitation to the triplet state T1, which is of a relatively longer lifetime, may result in

a population grating which should be considered as an extra mechanism which will contribute to the

third order nonlinearity and Bragg scattering of the phase conjugate signal.

Experiment

The experimental set up is as shown in Fig. 2 in which the frequency doubled Q-switched Nd:YAG

laser (532 nm) is split to obtain -20% as a probe beam A3 and the rest as two equally intense and

counter propagating pump beams A1 and A2. The phase conjugate signal is seen as a beam counter

propagating to A3, the intensity of which is first observed at different concentrations of the disodium
fluorescein in methanol in a 1 cm thick cuvette. The experimental results obtained are as expected (Fig.

3). At relatively low concentrations the number of the dye molecules are not enough to form a strong
grating to reflect the signal. As the concentration increases to the optimum one, -7 x 10-3 g/cm 3 in this

specific case, the grating is good enough to reflect a relatively powerful phase conjugate signal. At higher
concentrations up to 20 x 10-3 g/cm 3 the curve shows a weaker phase conjugate signal.

The decay in the phase conjugate signal at high concentration can be attributed to two factors:

(1) The fluorescence quenching where the fluorescence emitted by some molecules are absorbed by
others in the medium. This contributes to heating the medium quickly. The rise in temperature inhibits

the formation of the grating and hence the medium becomes less efficient. (2) The heat increase in the
cell causes the medium to boil. The hydrodynamic motion of the liquid tends to wash out the grating

and reduces its efficiency.

The dependence of the phase conjugate signal on the delay time between the probe and the

forward pump is shown in Fig. 4. Since the phase conjugate signal is thought to be due mainly to the

grating which is formed by the interference pattern of the two coherent beams, A1 and A3, one expects
that if the path difference between the beams is larger than the coherence length of the laser, which is

-1 cm (0.03 ns delay time), the signal should vanish. Surprisingly, the phase conjugate signal is detected
even for a path difference of more than 360 cm (12.0 ns delay time) (Fig. 5). This result is probably

attributable to the presence of stimulated scattering. Similar results are obtained for the same sample
in a smaller cell of 1 mm thickness. Preliminary experiments with a single beam show that stimulated

back-scattering signals can be obtained from pure ethanol, acetone and methanol. Experiments on

stimulated scattering in dye solutions are now in progress to clarify this situation.
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In summary, we discussed a population grating as a mechanism for the index grating in liquids,

along with the previously mentioned ones. In addition, our experimental results show that the phase

conjugate signal through DF3N'M could be superimposed on a signal due to stimulated scattering.
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Figure 1. Energy level diagram of a dye molecule.
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Figure 2. Experimental Layout: BS: Beam splitters M: Mirrors

A1, A2: Pump Beams, A3: Probe, A4: Phase Conjugate.
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